Acquired from: ftp.adelaide.edu.au:/pub/rocksoft/crc_v3.txt or ftp://ftp.rocksoft.com/papers/crc_v3.txt or http://www.repairfaq.org/filipg/LINK/F_crc_v3.htmlA PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS=================================================="Everything you wanted to know about CRC algorithms, but were afraidto ask for fear that errors in your understanding might be detected."Version : 3.Date : 19 August 1993.Author : Ross N. Williams.Net : ross@guest.adelaide.edu.au.FTP : ftp.adelaide.edu.au/pub/rocksoft/crc_v3.txtCompany : Rocksoft^tm Pty Ltd.Snail : 16 Lerwick Avenue, Hazelwood Park 5066, Australia.Fax : +61 8 373-4911 (c/- Internode Systems Pty Ltd).Phone : +61 8 379-9217 (10am to 10pm Adelaide Australia time).Note : "Rocksoft" is a trademark of Rocksoft Pty Ltd, Australia.Status : Copyright (C) Ross Williams, 1993. However, permission is granted to make and distribute verbatim copies of this document provided that this information block and copyright notice is included. Also, the C code modules included in this document are fully public domain.Thanks : Thanks to Jean-loup Gailly (jloup@chorus.fr) and Mark Adler (me@quest.jpl.nasa.gov) who both proof read this document and picked out lots of nits as well as some big fat bugs.Table of Contents----------------- Abstract 1. Introduction: Error Detection 2. The Need For Complexity 3. The Basic Idea Behind CRC Algorithms 4. Polynomical Arithmetic 5. Binary Arithmetic with No Carries 6. A Fully Worked Example 7. Choosing A Poly 8. A Straightforward CRC Implementation 9. A Table-Driven Implementation10. A Slightly Mangled Table-Driven Implementation11. "Reflected" Table-Driven Implementations12. "Reversed" Polys13. Initial and Final Values14. Defining Algorithms Absolutely15. A Parameterized Model For CRC Algorithms16. A Catalog of Parameter Sets for Standards17. An Implementation of the Model Algorithm18. Roll Your Own Table-Driven Implementation19. Generating A Lookup Table20. Summary21. Corrections A. Glossary B. References C. References I Have Detected But Haven't Yet SightedAbstract--------This document explains CRCs (Cyclic Redundancy Codes) and theirtable-driven implementations in full, precise detail. Much of theliterature on CRCs, and in particular on their table-drivenimplementations, is a little obscure (or at least seems so to me).This document is an attempt to provide a clear and simple no-nonsenseexplanation of CRCs and to absolutely nail down every detail of theoperation of their high-speed implementations. In addition to this,this document presents a parameterized model CRC algorithm called the"Rocksoft^tm Model CRC Algorithm". The model algorithm can beparameterized to behave like most of the CRC implementations around,and so acts as a good reference for describing particular algorithms.A low-speed implementation of the model CRC algorithm is provided inthe C programming language. Lastly there is a section giving two formsof high-speed table driven implementations, and providing a programthat generates CRC lookup tables.1. Introduction: Error Detection--------------------------------The aim of an error detection technique is to enable the receiver of amessage transmitted through a noisy (error-introducing) channel todetermine whether the message has been corrupted. To do this, thetransmitter constructs a value (called a checksum) that is a functionof the message, and appends it to the message. The receiver can thenuse the same function to calculate the checksum of the receivedmessage and compare it with the appended checksum to see if themessage was correctly received. For example, if we chose a checksumfunction which was simply the sum of the bytes in the message mod 256(i.e. modulo 256), then it might go something as follows. All numbersare in decimal. Message : 6 23 4 Message with checksum : 6 23 4 33 Message after transmission : 6 27 4 33In the above, the second byte of the message was corrupted from 23 to27 by the communications channel. However, the receiver can detectthis by comparing the transmitted checksum (33) with the computerchecksum of 37 (6 + 27 + 4). If the checksum itself is corrupted, acorrectly transmitted message might be incorrectly identified as acorrupted one. However, this is a safe-side failure. A dangerous-sidefailure occurs where the message and/or checksum is corrupted in amanner that results in a transmission that is internally consistent.Unfortunately, this possibility is completely unavoidable and the bestthat can be done is to minimize its probability by increasing theamount of information in the checksum (e.g. widening the checksum fromone byte to two bytes).Other error detection techniques exist that involve performing complextransformations on the message to inject it with redundantinformation. However, this document addresses only CRC algorithms,which fall into the class of error detection algorithms that leave thedata intact and append a checksum on the end. i.e.:2. The Need For Complexity--------------------------In the checksum example in the previous section, we saw how acorrupted message was detected using a checksum algorithm that simplysums the bytes in the message mod 256: Message : 6 23 4 Message with checksum : 6 23 4 33 Message after transmission : 6 27 4 33A problem with this algorithm is that it is too simple. If a number ofrandom corruptions occur, there is a 1 in 256 chance that they willnot be detected. For example: Message : 6 23 4 Message with checksum : 6 23 4 33 Message after transmission : 8 20 5 33To strengthen the checksum, we could change from an 8-bit register toa 16-bit register (i.e. sum the bytes mod 65536 instead of mod 256) soas to apparently reduce the probability of failure from 1/256 to1/65536. While basically a good idea, it fails in this case becausethe formula used is not sufficiently "random"; with a simple summingformula, each incoming byte affects roughly only one byte of thesumming register no matter how wide it is. For example, in the secondexample above, the summing register could be a Megabyte wide, and theerror would still go undetected. This problem can only be solved byreplacing the simple summing formula with a more sophisticated formulathat causes each incoming byte to have an effect on the entirechecksum register.Thus, we see that at least two aspects are required to form a strongchecksum function: WIDTH: A register width wide enough to provide a low a-priori probability of failure (e.g. 32-bits gives a 1/2^32 chance of failure). CHAOS: A formula that gives each input byte the potential to change any number of bits in the register.Note: The term "checksum" was presumably used to describe earlysumming formulas, but has now taken on a more general meaningencompassing more sophisticated algorithms such as the CRC ones. TheCRC algorithms to be described satisfy the second condition very well,and can be configured to operate with a variety of checksum widths.3. The Basic Idea Behind CRC Algorithms---------------------------------------Where might we go in our search for a more complex function thansumming? All sorts of schemes spring to mind. We could constructtables using the digits of pi, or hash each incoming byte with all thebytes in the register. We could even keep a large telephone bookon-line, and use each incoming byte combined with the register bytesto index a new phone number which would be the next register value.The possibilities are limitless.However, we do not need to go so far; the next arithmetic stepsuffices. While addition is clearly not strong enough to form aneffective checksum, it turns out that division is, so long as thedivisor is about as wide as the checksum register.The basic idea of CRC algorithms is simply to treat the message as anenormous binary number, to divide it by another fixed binary number,and to make the remainder from this division the checksum. Uponreceipt of the message, the receiver can perform the same division andcompare the remainder with the "checksum" (transmitted remainder).Example: Suppose the the message consisted of the two bytes (6,23) asin the previous example. These can be considered to be the hexadecimalnumber 0617 which can be considered to be the binary number0000-0110-0001-0111. Suppose that we use a checksum register one-bytewide and use a constant divisor of 1001, then the checksum is theremainder after 0000-0110-0001-0111 is divided by 1001. While in thiscase, this calculation could obviously be performed using commongarden variety 32-bit registers, in the general case this is messy. Soinstead, we'll do the division using good-'ol long division which youlearnt in school (remember?). Except this time, it's in binary: ...0000010101101 = 00AD = 173 = QUOTIENT ____-___-___-___-9= 1001 ) 0000011000010111 = 0617 = 1559 = DIVIDENDDIVISOR 0000.,,....,.,,, ----.,,....,.,,, 0000,,....,.,,, 0000,,....,.,,, ----,,....,.,,, 0001,....,.,,, 0000,....,.,,, ----,....,.,,, 0011....,.,,, 0000....,.,,, ----....,.,,, 0110...,.,,, 0000...,.,,, ----...,.,,, 1100..,.,,, 1001..,.,,, ====..,.,,, 0110.,.,,, 0000.,.,,, ----.,.,,, 1100,.,,, 1001,.,,, ====,.,,, 0111.,,, 0000.,,, ----.,,, 1110,,, 1001,,, ====,,, 1011,, 1001,, ====,, 0101, 0000, ---- 1011 1001 ==== 0010 = 02 = 2 = REMAINDERIn decimal this is "1559 divided by 9 is 173 with a remainder of 2".Although the effect of each bit of the input message on the quotientis not all that significant, the 4-bit remainder gets kicked aboutquite a lot during the calculation, and if more bytes were added tothe message (dividend) it's value could change radically again veryquickly. This is why division works where addition doesn't.In case you're wondering, using this 4-bit checksum the transmittedmessage would look like this (in hexadecimal): 06172 (where the 0617is the message and the 2 is the checksum). The receiver would divide0617 by 9 and see whether the remainder was 2.4. Polynomical Arithmetic-------------------------While the division scheme described in the previous section is veryvery similar to the checksumming schemes called CRC schemes, the CRCschemes are in fact a bit weirder, and we need to delve into somestrange number systems to understand them.The word you will hear all the time when dealing with CRC algorithmsis the word "polynomial". A given CRC algorithm will be said to beusing a particular polynomial, and CRC algorithms in general are saidto be operating using polynomial arithmetic. What does this mean?Instead of the divisor, dividend (message), quotient, and remainder(as described in the previous section) being viewed as positiveintegers, they are viewed as polynomials with binary coefficients.This is done by treating each number as a bit-string whose bits arethe coefficients of a polynomial. For example, the ordinary number 23(decimal) is 17 (hex) and 10111 binary and so it corresponds to thepolynomial: 1*x^4 + 0*x^3 + 1*x^2 + 1*x^1 + 1*x^0or, more simply: x^4 + x^2 + x^1 + x^0Using this technique, the message, and the divisor can be representedas polynomials and we can do all our arithmetic just as before, exceptthat now it's all cluttered up with Xs. For example, suppose we wantedto multiply 1101 by 1011. We can do this simply by multiplying thepolynomials:(x^3 + x^2 + x^0)(x^3 + x^1 + x^0)= (x^6 + x^4 + x^3 + x^5 + x^3 + x^2 + x^3 + x^1 + x^0) = x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0At this point, to get the right answer, we have to pretend that x is 2and propagate binary carries from the 3*x^3 yielding x^7 + x^3 + x^2 + x^1 + x^0It's just like ordinary arithmetic except that the base is abstractedand brought into all the calculations explicitly instead of beingthere implicitly. So what's the point?The point is that IF we pretend that we DON'T know what x is, we CAN'Tperform the carries. We don't know that 3*x^3 is the same as x^4 + x^3because we don't know that x is 2. In this true polynomial arithmeticthe relationship between all the coefficients is unknown and so thecoefficients of each power effectively become strongly typed;coefficients of x^2 are effectively of a different type tocoefficients of x^3.With the coefficients of each power nicely isolated, mathematicianscame up with all sorts of different kinds of polynomial arithmeticssimply by changing the rules about how coefficients work. Of theseschemes, one in particular is relevant here, and that is a polynomialarithmetic where the coefficients are calculated MOD 2 and there is nocarry; all coefficients must be either 0 or 1 and no carries arecalculated. This is called "polynomial arithmetic mod 2". Thus,returning to the earlier example:(x^3 + x^2 + x^0)(x^3 + x^1 + x^0)= (x^6 + x^4 + x^3 + x^5 + x^3 + x^2 + x^3 + x^1 + x^0)= x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0Under the other arithmetic, the 3*x^3 term was propagated using thecarry mechanism using the knowledge that x=2. Under "polynomialarithmetic mod 2", we don't know what x is, there are no carries, andall coefficients have to be calculated mod 2. Thus, the resultbecomes:= x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + x^0As Knuth [Knuth81] says (p.400): "The reader should note the similarity between polynomial arithmetic and multiple-precision arithmetic (Section 4.3.1), where the radix b is substituted for x. The chief difference is that the coefficient u_k of x^k in polynomial arithmetic bears little or no relation to its neighboring coefficients x^{k-1} [and x^{k+1}], so the idea of "carrying" from one place to another is absent. In fact polynomial arithmetic modulo b is essentially identical to multiple precision arithmetic with radix b, except that all carries are suppressed."Thus polynomical arithmetic mod 2 is just binary arithmetic mod 2 withno carries. While polynomials provide useful mathematical machinery inmore analytical approaches to CRC and error-correction algorithms, forthe purposes of exposition they provide no extra insight and someencumbrance and have been discarded in the remainder of this documentin favour of direct manipulation of the arithmetical system with whichthey are isomorphic: binary arithmetic with no carry.5. Binary Arithmetic with No Carries------------------------------------Having dispensed with polynomials, we can focus on the real arithmeticissue, which is that all the arithmetic performed during CRCcalculations is performed in binary with no carries. Often this iscalled polynomial arithmetic, but as I have declared the rest of thisdocument a polynomial free zone, we'll have to call it CRC arithmeticinstead. As this arithmetic is a key part of CRC calculations, we'dbetter get used to it. Here we go:Adding two numbers in CRC arithmetic is the same as adding numbers inordinary binary arithmetic except there is no carry. This means thateach pair of corresponding bits determine the corresponding output bitwithout reference to any other bit positions. For example: 10011011 +11001010 -------- 01010001 --------There are only four cases for each bit position: 0+0=0 0+1=1 1+0=1 1+1=0 (no carry)Subtraction is identical: 10011011 -11001010 -------- 01010001 --------with 0-0=0 0-1=1 (wraparound) 1-0=1 1-1=0In fact, both addition and subtraction in CRC arithmetic is equivalentto the XOR operation, and the XOR operation is its own inverse. Thiseffectively reduces the operations of the first level of power(addition, subtraction) to a single operation that is its own inverse.This is a very convenient property of the arithmetic.By collapsing of addition and subtraction, the arithmetic discards anynotion of magnitude beyond the power of its highest one bit. While itseems clear that 1010 is greater than 10, it is no longer the casethat 1010 can be considered to be greater than 1001. To see this, notethat you can get from 1010 to 1001 by both adding and subtracting thesame quantity: 1010 = 1010 + 0011 1010 = 1010 - 0011This makes nonsense of any notion of order.Having defined addition, we can move to multiplication and division.Multiplication is absolutely straightforward, being the sum of thefirst number, shifted in accordance with the second number. 1101 x 1011 ---- 1101 1101. 0000.. 1101... ------- 1111111 Note: The sum uses CRC addition -------Division is a little messier as we need to know when "a number goesinto another number". To do this, we invoke the weak definition ofmagnitude defined earlier: that X is greater than or equal to Y iffthe position of the highest 1 bit of X is the same or greater than theposition of the highest 1 bit of Y. Here's a fully worked division(nicked from [Tanenbaum81]). 1100001010 _______________10011 ) 11010110110000 10011,,.,,.... -----,,.,,.... 10011,.,,.... 10011,.,,.... -----,.,,.... 00001.,,.... 00000.,,.... -----.,,.... 00010,,.... 00000,,.... -----,,.... 00101,.... 00000,.... -----,.... 01011.... 00000.... -----.... 10110... 10011... -----... 01010.. 00000.. -----.. 10100. 10011. -----. 01110 00000 ----- 1110 = RemainderThat's really it. Before proceeding further, however, it's worth ourwhile playing with this arithmetic a bit to get used to it.We've already played with addition and subtraction, noticing that theyare the same thing. Here, though, we should note that in thisarithmetic A+0=A and A-0=A. This obvious property is very usefullater.In dealing with CRC multiplication and division, it's worth getting afeel for the concepts of MULTIPLE and DIVISIBLE.If a number A is a multiple of B then what this means in CRCarithmetic is that it is possible to construct A from zero by XORingin various shifts of B. For example, if A was 0111010110 and B was 11,we could construct A from B as follows: 0111010110 = .......11. + ....11.... + ...11..... .11.......However, if A is 0111010111, it is not possible to construct it out ofvarious shifts of B (can you see why? - see later) so it is said to benot divisible by B in CRC arithmetic.Thus we see that CRC arithmetic is primarily about XORing particularvalues at various shifting offsets.6. A Fully Worked Example-------------------------Having defined CRC arithmetic, we can now frame a CRC calculation assimply a division, because that's all it is! This section fills in thedetails and gives an example.To perform a CRC calculation, we need to choose a divisor. In mathsmarketing speak the divisor is called the "generator polynomial" orsimply the "polynomial", and is a key parameter of any CRC algorithm.It would probably be more friendly to call the divisor something else,but the poly talk is so deeply ingrained in the field that it wouldnow be confusing to avoid it. As a compromise, we will refer to theCRC polynomial as the "poly". Just think of this number as a sort ofparrot. "Hello poly!"You can choose any poly and come up with a CRC algorithm. However,some polys are better than others, and so it is wise to stick with thetried an tested ones. A later section addresses this issue.The width (position of the highest 1 bit) of the poly is veryimportant as it dominates the whole calculation. Typically, widths of16 or 32 are chosen so as to simplify implementation on moderncomputers. The width of a poly is the actual bit position of thehighest bit. For example, the width of 10011 is 4, not 5. For thepurposes of example, we will chose a poly of 10011 (of width W of 4).Having chosen a poly, we can proceed with the calculation. This issimply a division (in CRC arithmetic) of the message by the poly. Theonly trick is that W zero bits are appended to the message before theCRC is calculated. Thus we have: Original message : 1101011011 Poly : 10011 Message after appending W zeros : 11010110110000Now we simply divide the augmented message by the poly using CRCarithmetic. This is the same division as before: 1100001010 = Quotient (nobody cares about the quotient) _______________10011 ) 11010110110000 = Augmented message (1101011011 + 0000)=Poly 10011,,.,,.... -----,,.,,.... 10011,.,,.... 10011,.,,.... -----,.,,.... 00001.,,.... 00000.,,.... -----.,,.... 00010,,.... 00000,,.... -----,,.... 00101,.... 00000,.... -----,.... 01011.... 00000.... -----.... 10110... 10011... -----... 01010.. 00000.. -----.. 10100. 10011. -----. 01110 00000 ----- 1110 = Remainder = THE CHECKSUM!!!!The division yields a quotient, which we throw away, and a remainder,which is the calculated checksum. This ends the calculation.Usually, the checksum is then appended to the message and the resulttransmitted. In this case the transmission would be: 11010110111110.At the other end, the receiver can do one of two things: a. Separate the message and checksum. Calculate the checksum for the message (after appending W zeros) and compare the two checksums. b. Checksum the whole lot (without appending zeros) and see if it comes out as zero!These two options are equivalent. However, in the next section, wewill be assuming option b because it is marginally mathematicallycleaner.A summary of the operation of the class of CRC algorithms: 1. Choose a width W, and a poly G (of width W). 2. Append W zero bits to the message. Call this M'. 3. Divide M' by G using CRC arithmetic. The remainder is the checksum.That's all there is to it.7. Choosing A Poly------------------Choosing a poly is somewhat of a black art and the reader is referredto [Tanenbaum81] (p.130-132) which has a very clear discussion of thisissue. This section merely aims to put the fear of death into anyonewho so much as toys with the idea of making up their own poly. If youdon't care about why one poly might be better than another and justwant to find out about high-speed implementations, choose one of thearithmetically sound polys listed at the end of this section and skipto the next section.First note that the transmitted message T is a multiple of the poly.To see this, note that 1) the last W bits of T is the remainder afterdividing the augmented (by zeros remember) message by the poly, and 2)addition is the same as subtraction so adding the remainder pushes thevalue up to the next multiple. Now note that if the transmittedmessage is corrupted in transmission that we will receive T+E where Eis an error vector (and + is CRC addition (i.e. XOR)). Upon receipt ofthis message, the receiver divides T+E by G. As T mod G is 0, (T+E)mod G = E mod G. Thus, the capacity of the poly we choose to catchparticular kinds of errors will be determined by the set of multiplesof G, for any corruption E that is a multiple of G will be undetected.Our task then is to find classes of G whose multiples look as littlelike the kind of line noise (that will be creating the corruptions) aspossible. So let's examine the kinds of line noise we can expect.SINGLE BIT ERRORS: A single bit error means E=1000...0000. We canensure that this class of error is always detected by making sure thatG has at least two bits set to 1. Any multiple of G will beconstructed using shifting and adding and it is impossible toconstruct a value with a single bit by shifting an adding a singlevalue with more than one bit set, as the two end bits will alwayspersist.TWO-BIT ERRORS: To detect all errors of the form 100...000100...000(i.e. E contains two 1 bits) choose a G that does not have multiplesthat are 11, 101, 1001, 10001, 100001, etc. It is not clear to me howone goes about doing this (I don't have the pure maths background),but Tanenbaum assures us that such G do exist, and cites G with 1 bits(15,14,1) turned on as an example of one G that won't divide anythingless than 1...1 where ... is 32767 zeros.ERRORS WITH AN ODD NUMBER OF BITS: We can catch all corruptions whereE has an odd number of bits by choosing a G that has an even number ofbits. To see this, note that 1) CRC multiplication is simply XORing aconstant value into a register at various offsets, 2) XORing is simplya bit-flip operation, and 3) if you XOR a value with an even number ofbits into a register, the oddness of the number of 1 bits in theregister remains invariant. Example: Starting with E=111, attempt toflip all three bits to zero by the repeated application of XORing in11 at one of the two offsets (i.e. "E=E XOR 011" and "E=E XOR 110")This is nearly isomorphic to the "glass tumblers" party puzzle whereyou challenge someone to flip three tumblers by the repeatedapplication of the operation of flipping any two. Most of the popularCRC polys contain an even number of 1 bits. (Note: Tanenbaum statesmore specifically that all errors with an odd number of bits can becaught by making G a multiple of 11).BURST ERRORS: A burst error looks like E=000...000111...11110000...00.That is, E consists of all zeros except for a run of 1s somewhereinside. This can be recast as E=(10000...00)(1111111...111) wherethere are z zeros in the LEFT part and n ones in the RIGHT part. Tocatch errors of this kind, we simply set the lowest bit of G to 1.Doing this ensures that LEFT cannot be a factor of G. Then, so long asG is wider than RIGHT, the error will be detected. See Tanenbaum for aclearer explanation of this; I'm a little fuzzy on this one. Note:Tanenbaum asserts that the probability of a burst of length greaterthan W getting through is (0.5)^W.That concludes the section on the fine art of selecting polys.Some popular polys are:16 bits: (16,12,5,0) [X25 standard] (16,15,2,0) ["CRC-16"]32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]8. A Straightforward CRC Implementation---------------------------------------That's the end of the theory; now we turn to implementations. To startwith, we examine an absolutely straight-down-the-middle boringstraightforward low-speed implementation that doesn't use any speedtricks at all. We'll then transform that program progessively until weend up with the compact table-driven code we all know and love andwhich some of us would like to understand.To implement a CRC algorithm all we have to do is implement CRCdivision. There are two reasons why we cannot simply use the divideinstruction of whatever machine we are on. The first is that we haveto do the divide in CRC arithmetic. The second is that the dividendmight be ten megabytes long, and todays processors do not haveregisters that big.So to implement CRC division, we have to feed the message through adivision register. At this point, we have to be absolutely preciseabout the message data. In all the following examples the message willbe considered to be a stream of bytes (each of 8 bits) with bit 7 ofeach byte being considered to be the most significant bit (MSB). Thebit stream formed from these bytes will be the bit stream with the MSB(bit 7) of the first byte first, going down to bit 0 of the firstbyte, and then the MSB of the second byte and so on.With this in mind, we can sketch an implementation of the CRCdivision. For the purposes of example, consider a poly with W=4 andthe poly=10111. Then, the perform the division, we need to use a 4-bitregister: 3 2 1 0 Bits +---+---+---+---+ Pop! <-- | | | | | <----- Augmented message +---+---+---+---+ 1 0 1 1 1 = The Poly(Reminder: The augmented message is the message followed by W zero bits.)To perform the division perform the following: Load the register with zero bits. Augment the message by appending W zero bits to the end of it. While (more message bits) Begin Shift the register left by one bit, reading the next bit of the augmented message into register bit position 0. If (a 1 bit popped out of the register during step 3) Register = Register XOR Poly. End The register now contains the remainder.(Note: In practice, the IF condition can be tested by testing the top bit of R before performing the shift.)We will call this algorithm "SIMPLE".This might look a bit messy, but all we are really doing is"subtracting" various powers (i.e. shiftings) of the poly from themessage until there is nothing left but the remainder. Study themanual examples of long division if you don't understand this.It should be clear that the above algorithm will work for any width W.9. A Table-Driven Implementation--------------------------------The SIMPLE algorithm above is a good starting point because itcorresponds directly to the theory presented so far, and because it isso SIMPLE. However, because it operates at the bit level, it is ratherawkward to code (even in C), and inefficient to execute (it has toloop once for each bit). To speed it up, we need to find a way toenable the algorithm to process the message in units larger than onebit. Candidate quantities are nibbles (4 bits), bytes (8 bits), words(16 bits) and longwords (32 bits) and higher if we can achieve it. Ofthese, 4 bits is best avoided because it does not correspond to a byteboundary. At the very least, any speedup should allow us to operate atbyte boundaries, and in fact most of the table driven algorithmsoperate a byte at a time.For the purposes of discussion, let us switch from a 4-bit poly to a32-bit one. Our register looks much the same, except the boxesrepresent bytes instead of bits, and the Poly is 33 bits (one implicit1 bit at the top and 32 "active" bits) (W=32). 3 2 1 0 Bytes +----+----+----+----+ Pop! <-- | | | | | <----- Augmented message +----+----+----+----+ 1<------32 bits------>The SIMPLE algorithm is still applicable. Let us examine what it does.Imagine that the SIMPLE algorithm is in full swing and consider thetop 8 bits of the 32-bit register (byte 3) to have the values: t7 t6 t5 t4 t3 t2 t1 t0In the next iteration of SIMPLE, t7 will determine whether the Polywill be XORed into the entire register. If t7=1, this will happen,otherwise it will not. Suppose that the top 8 bits of the poly are g7g6.. g0, then after the next iteration, the top byte will be: t6 t5 t4 t3 t2 t1 t0 ??+ t7 * (g7 g6 g5 g4 g3 g2 g1 g0) [Reminder: + is XOR]The NEW top bit (that will control what happens in the next iteration)now has the value t6 + t7*g7. The important thing to notice here isthat from an informational point of view, all the information requiredto calculate the NEW top bit was present in the top TWO bits of theoriginal top byte. Similarly, the NEXT top bit can be calculated inadvance SOLELY from the top THREE bits t7, t6, and t5. In fact, ingeneral, the value of the top bit in the register in k iterations canbe calculated from the top k bits of the register. Let us take thisfor granted for a moment.Consider for a moment that we use the top 8 bits of the register tocalculate the value of the top bit of the register during the next 8iterations. Suppose that we drive the next 8 iterations using thecalculated values (which we could perhaps store in a single byteregister and shift out to pick off each bit). Then we note threethings: * The top byte of the register now doesn't matter. No matter how many times and at what offset the poly is XORed to the top 8 bits, they will all be shifted out the right hand side during the next 8 iterations anyway. * The remaining bits will be shifted left one position and the rightmost byte of the register will be shifted in the next byte AND * While all this is going on, the register will be subjected to a series of XOR's in accordance with the bits of the pre-calculated control byte.Now consider the effect of XORing in a constant value at variousoffsets to a register. For example: 0100010 Register ...0110 XOR this ..0110. XOR this 0110... XOR this ------- 0011000 -------The point of this is that you can XOR constant values into a registerto your heart's delight, and in the end, there will exist a valuewhich when XORed in with the original register will have the sameeffect as all the other XORs.Perhaps you can see the solution now. Putting all the pieces togetherwe have an algorithm that goes like this: While (augmented message is not exhausted) Begin Examine the top byte of the register Calculate the control byte from the top byte of the register Sum all the Polys at various offsets that are to be XORed into the register in accordance with the control byte Shift the register left by one byte, reading a new message byte into the rightmost byte of the register XOR the summed polys to the register EndAs it stands this is not much better than the SIMPLE algorithm.However, it turns out that most of the calculation can be precomputedand assembled into a table. As a result, the above algorithm can bereduced to: While (augmented message is not exhaused) Begin Top = top_byte(Register); Register = (Register << 24) | next_augmessage_byte; Register = Register XOR precomputed_table[Top]; EndThere! If you understand this, you've grasped the main idea oftable-driven CRC algorithms. The above is a very efficient algorithmrequiring just a shift, and OR, an XOR, and a table lookup per byte.Graphically, it looks like this: 3 2 1 0 Bytes +----+----+----+----+ +-----<| | | | | <----- Augmented message | +----+----+----+----+ | ^ | | | XOR | | | 0+----+----+----+----+ Algorithm v +----+----+----+----+ --------- | +----+----+----+----+ 1. Shift the register left by | +----+----+----+----+ one byte, reading in a new | +----+----+----+----+ message byte. | +----+----+----+----+ 2. Use the top byte just rotated | +----+----+----+----+ out of the register to index +----->+----+----+----+----+ the table of 256 32-bit values. +----+----+----+----+ 3. XOR the table value into the +----+----+----+----+ register. +----+----+----+----+ 4. Goto 1 iff more augmented +----+----+----+----+ message bytes. 255+----+----+----+----+In C, the algorithm main loop looks like this: r=0; while (len--) { byte t = (r >> 24) & 0xFF; r = (r << 8) | *p++; r^=table[t]; }where len is the length of the augmented message in bytes, p points tothe augmented message, r is the register, t is a temporary, and tableis the computed table. This code can be made even more unreadable asfollows: r=0; while (len--) r = ((r << 8) | *p++) ^ t[(r >> 24) & 0xFF];This is a very clean, efficient loop, although not a very obvious oneto the casual observer not versed in CRC theory. We will call this theTABLE algorithm.10. A Slightly Mangled Table-Driven Implementation--------------------------------------------------Despite the terse beauty of the line r=0; while (len--) r = ((r << 8) | *p++) ^ t[(r >> 24) & 0xFF];those optimizing hackers couldn't leave it alone. The trouble, yousee, is that this loop operates upon the AUGMENTED message and inorder to use this code, you have to append W/8 zero bytes to the endof the message before pointing p at it. Depending on the run-timeenvironment, this may or may not be a problem; if the block of datawas handed to us by some other code, it could be a BIG problem. Onealternative is simply to append the following line after the aboveloop, once for each zero byte: for (i=0; i << 8) ^ t[(r >> 24) & 0xFF];This looks like a sane enough solution to me. However, at the furtherexpense of clarity (which, you must admit, is already a pretty scarecommodity in this code) we can reorganize this small loop further soas to avoid the need to either augment the message with zero bytes, orto explicitly process zero bytes at the end as above. To explain theoptimization, we return to the processing diagram given earlier. 3 2 1 0 Bytes +----+----+----+----+ +-----<| | | | | <----- Augmented message | +----+----+----+----+ | ^ | | | XOR | | | 0+----+----+----+----+ Algorithm v +----+----+----+----+ --------- | +----+----+----+----+ 1. Shift the register left by | +----+----+----+----+ one byte, reading in a new | +----+----+----+----+ message byte. | +----+----+----+----+ 2. Use the top byte just rotated | +----+----+----+----+ out of the register to index +----->+----+----+----+----+ the table of 256 32-bit values. +----+----+----+----+ 3. XOR the table value into the +----+----+----+----+ register. +----+----+----+----+ 4. Goto 1 iff more augmented +----+----+----+----+ message bytes. 255+----+----+----+----+Now, note the following facts:TAIL: The W/4 augmented zero bytes that appear at the end of the message will be pushed into the register from the right as all the other bytes are, but their values (0) will have no effect whatsoever on the register because 1) XORing with zero does not change the target byte, and 2) the four bytes are never propagated out the left side of the register where their zeroness might have some sort of influence. Thus, the sole function of the W/4 augmented zero bytes is to drive the calculation for another W/4 byte cycles so that the end of the REAL data passes all the way through the register.HEAD: If the initial value of the register is zero, the first four iterations of the loop will have the sole effect of shifting in the first four bytes of the message from the right. This is because the first 32 control bits are all zero and so nothing is XORed into the register. Even if the initial value is not zero, the first 4 byte iterations of the algorithm will have the sole effect of shifting the first 4 bytes of the message into the register and then XORing them with some constant value (that is a function of the initial value of the register).These facts, combined with the XOR property (A xor B) xor C = A xor (B xor C)mean that message bytes need not actually travel through the W/4 bytesof the register. Instead, they can be XORed into the top byte justbefore it is used to index the lookup table. This leads to thefollowing modified version of the algorithm. +----- +----+----+----+----+ next message byte to yield an +----+----+----+----+ index into the table ([0,255]). +----+----+----+----+ 3. XOR the table value into the +----+----+----+----+ register. +----+----+----+----+ 4. Goto 1 iff more augmented 255+----+----+----+----+ message bytes.Note: The initial register value for this algorithm must be theinitial value of the register for the previous algorithm fed throughthe table four times. Note: The table is such that if the previousalgorithm used 0, the new algorithm will too.This is an IDENTICAL algorithm and will yield IDENTICAL results. The Ccode looks something like this: r=0; while (len--) r = (r<<8) ^ t[(r >> 24) ^ *p++];and THIS is the code that you are likely to find inside currenttable-driven CRC implementations. Some FF masks might have to be ANDedin here and there for portability's sake, but basically, the aboveloop is IT. We will call this the DIRECT TABLE ALGORITHM.During the process of trying to understand all this stuff, I managedto derive the SIMPLE algorithm and the table-driven version derivedfrom that. However, when I compared my code with the code found inreal-implementations, I was totally bamboozled as to why the byteswere being XORed in at the wrong end of the register! It took quite awhile before I figured out that theirs and my algorithms were actuallythe same. Part of why I am writing this document is that, while thelink between division and my earlier table-driven code is vaguelyapparent, any such link is fairly well erased when you start pumpingbytes in at the "wrong end" of the register. It looks all wrong!If you've got this far, you not only understand the theory, thepractice, the optimized practice, but you also understand the realcode you are likely to run into. Could get any more complicated? Yesit can.11. "Reflected" Table-Driven Implementations--------------------------------------------Despite the fact that the above code is probably optimized about asmuch as it could be, this did not stop some enterprising individualsfrom making things even more complicated. To understand how thishappened, we have to enter the world of hardware.DEFINITION: A value/register is reflected if it's bits are swappedaround its centre. For example: 0101 is the 4-bit reflection of 1010.0011 is the reflection of 1100.0111-0101-1010-1111-0010-0101-1011-1100 is the reflection of0011-1101-1010-0100-1111-0101-1010-1110.Turns out that UARTs (those handy little chips that perform serial IO)are in the habit of transmitting each byte with the least significantbit (bit 0) first and the most significant bit (bit 7) last (i.e.reflected). An effect of this convention is that hardware engineersconstructing hardware CRC calculators that operate at the bit leveltook to calculating CRCs of bytes streams with each of the bytesreflected within itself. The bytes are processed in the same order,but the bits in each byte are swapped; bit 0 is now bit 7, bit 1 isnow bit 6, and so on. Now this wouldn't matter much if this conventionwas restricted to hardware land. However it seems that at some stagesome of these CRC values were presented at the software level andsomeone had to write some code that would interoperate with thehardware CRC calculation.In this situation, a normal sane software engineer would simplyreflect each byte before processing it. However, it would seem thatnormal sane software engineers were thin on the ground when this earlyground was being broken, because instead of reflecting the bytes,whoever was responsible held down the byte and reflected the world,leading to the following "reflected" algorithm which is identical tothe previous one except that everything is reflected except the inputbytes. Message (non augmented) >-----+ | Bytes 0 1 2 3 v +----+----+----+----+ | | | | | |>----XOR +----+----+----+----+ | ^ | | | XOR | | | +----+----+----+----+0 | +----+----+----+----+ v +----+----+----+----+ | +----+----+----+----+ | +----+----+----+----+ | +----+----+----+----+ | +----+----+----+----+ | +----+----+----+----+<-----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+255Notes: * The table is identical to the one in the previous algorithm except that each entry has been reflected. * The initial value of the register is the same as in the previous algorithm except that it has been reflected. * The bytes of the message are processed in the same order as before (i.e. the message itself is not reflected). * The message bytes themselves don't need to be explicitly reflected, because everything else has been!At the end of execution, the register contains the reflection of thefinal CRC value (remainder). Actually, I'm being rather hard onwhoever cooked this up because it seems that hardware implementationsof the CRC algorithm used the reflected checksum value and soproducing a reflected CRC was just right. In fact reflecting the worldwas probably a good engineering solution - if a confusing one.We will call this the REFLECTED algorithm.Whether or not it made sense at the time, the effect of havingreflected algorithms kicking around the world's FTP sites is thatabout half the CRC implementations one runs into are reflected and theother half not. It's really terribly confusing. In particular, itwould seem to me that the casual reader who runs into a reflected,table-driven implementation with the bytes "fed in the wrong end"would have Buckley's chance of ever connecting the code to the conceptof binary mod 2 division.It couldn't get any more confusing could it? Yes it could.12. "Reversed" Polys--------------------As if reflected implementations weren't enough, there is anotherconcept kicking around which makes the situation bizaarly confusing.The concept is reversed Polys.It turns out that the reflection of good polys tend to be good polystoo! That is, if G=11101 is a good poly value, then 10111 will be aswell. As a consequence, it seems that every time an organization (suchas CCITT) standardizes on a particularly good poly ("polynomial"),those in the real world can't leave the poly's reflection aloneeither. They just HAVE to use it. As a result, the set of "standard"poly's has a corresponding set of reflections, which are also in use.To avoid confusion, we will call these the "reversed" polys. X25 standard: 1-0001-0000-0010-0001 X25 reversed: 1-0000-1000-0001-0001 CRC16 standard: 1-1000-0000-0000-0101 CRC16 reversed: 1-0100-0000-0000-0011Note that here it is the entire poly that is being reflected/reversed,not just the bottom W bits. This is an important distinction. In thereflected algorithm described in the previous section, the poly usedin the reflected algorithm was actually identical to that used in thenon-reflected algorithm; all that had happened is that the bytes hadeffectively been reflected. As such, all the 16-bit/32-bit numbers inthe algorithm had to be reflected. In contrast, the ENTIRE polyincludes the implicit one bit at the top, and so reversing a poly isnot the same as reflecting its bottom 16 or 32 bits.The upshot of all this is that a reflected algorithm is not equivalentto the original algorithm with the poly reflected. Actually, this isprobably less confusing than if they were duals.If all this seems a bit unclear, don't worry, because we're going tosort it all out "real soon now". Just one more section to go beforethat.13. Initial and Final Values----------------------------In addition to the complexity already seen, CRC algorithms differ fromeach other in two other regards: * The initial value of the register. * The value to be XORed with the final register value.For example, the "CRC32" algorithm initializes its register toFFFFFFFF and XORs the final register value with FFFFFFFF.Most CRC algorithms initialize their register to zero. However, someinitialize it to a non-zero value. In theory (i.e. with no assumptionsabout the message), the initial value has no affect on the strength ofthe CRC algorithm, the initial value merely providing a fixed startingpoint from which the register value can progress. However, inpractice, some messages are more likely than others, and it is wise toinitialize the CRC algorithm register to a value that does not have"blind spots" that are likely to occur in practice. By "blind spot" ismeant a sequence of message bytes that do not result in the registerchanging its value. In particular, any CRC algorithm that initializesits register to zero will have a blind spot of zero when it starts upand will be unable to "count" a leading run of zero bytes. As aleading run of zero bytes is quite common in real messages, it is wiseto initialize the algorithm register to a non-zero value.14. Defining Algorithms Absolutely----------------------------------At this point we have covered all the different aspects oftable-driven CRC algorithms. As there are so many variations on thesealgorithms, it is worth trying to establish a nomenclature for them.This section attempts to do that.We have seen that CRC algorithms vary in: * Width of the poly (polynomial). * Value of the poly. * Initial value for the register. * Whether the bits of each byte are reflected before being processed. * Whether the algorithm feeds input bytes through the register or xors them with a byte from one end and then straight into the table. * Whether the final register value should be reversed (as in reflected versions). * Value to XOR with the final register value.In order to be able to talk about particular CRC algorithms, we needto able to define them more precisely than this. For this reason, thenext section attempts to provide a well-defined parameterized modelfor CRC algorithms. To refer to a particular algorithm, we need thensimply specify the algorithm in terms of parameters to the model.15. A Parameterized Model For CRC Algorithms--------------------------------------------In this section we define a precise parameterized model CRC algorithmwhich, for want of a better name, we will call the "Rocksoft^tm ModelCRC Algorithm" (and why not? Rocksoft^tm could do with some freeadvertising :-).The most important aspect of the model algorithm is that it focussesexclusively on functionality, ignoring all implementation details. Theaim of the exercise is to construct a way of referring precisely toparticular CRC algorithms, regardless of how confusingly they areimplemented. To this end, the model must be as simple and precise aspossible, with as little confusion as possible.The Rocksoft^tm Model CRC Algorithm is based essentially on the DIRECTTABLE ALGORITHM specified earlier. However, the algorithm has to befurther parameterized to enable it to behave in the same way as someof the messier algorithms out in the real world.To enable the algorithm to behave like reflected algorithms, weprovide a boolean option to reflect the input bytes, and a booleanoption to specify whether to reflect the output checksum value. Byframing reflection as an input/output transformation, we avoid theconfusion of having to mentally map the parameters of reflected andnon-reflected algorithms.An extra parameter allows the algorithm's register to be initializedto a particular value. A further parameter is XORed with the finalvalue before it is returned.By putting all these pieces together we end up with the parameters ofthe algorithm: NAME: This is a name given to the algorithm. A string value. WIDTH: This is the width of the algorithm expressed in bits. This is one less than the width of the Poly. POLY: This parameter is the poly. This is a binary value that should be specified as a hexadecimal number. The top bit of the poly should be omitted. For example, if the poly is 10110, you should specify 06. An important aspect of this parameter is that it represents the unreflected poly; the bottom bit of this parameter is always the LSB of the divisor during the division regardless of whether the algorithm being modelled is reflected. INIT: This parameter specifies the initial value of the register when the algorithm starts. This is the value that is to be assigned to the register in the direct table algorithm. In the table algorithm, we may think of the register always commencing with the value zero, and this value being XORed into the register after the N'th bit iteration. This parameter should be specified as a hexadecimal number. REFIN: This is a boolean parameter. If it is FALSE, input bytes are processed with bit 7 being treated as the most significant bit (MSB) and bit 0 being treated as the least significant bit. If this parameter is FALSE, each byte is reflected before being processed. REFOUT: This is a boolean parameter. If it is set to FALSE, the final value in the register is fed into the XOROUT stage directly, otherwise, if this parameter is TRUE, the final register value is reflected first. XOROUT: This is an W-bit value that should be specified as a hexadecimal number. It is XORed to the final register value (after the REFOUT) stage before the value is returned as the official checksum. CHECK: This field is not strictly part of the definition, and, in the event of an inconsistency between this field and the other field, the other fields take precedence. This field is a check value that can be used as a weak validator of implementations of the algorithm. The field contains the checksum obtained when the ASCII string "123456789" is fed through the specified algorithm (i.e. 313233... (hexadecimal)).With these parameters defined, the model can now be used to specify aparticular CRC algorithm exactly. Here is an example specification fora popular form of the CRC-16 algorithm. Name : "CRC-16" Width : 16 Poly : 8005 Init : 0000 RefIn : True RefOut : True XorOut : 0000 Check : BB3D16. A Catalog of Parameter Sets for Standards---------------------------------------------At this point, I would like to give a list of the specifications forcommonly used CRC algorithms. However, most of the algorithms that Ihave come into contact with so far are specified in such a vague waythat this has not been possible. What I can provide is a list of polysfor various CRC standards I have heard of: X25 standard : 1021 [CRC-CCITT, ADCCP, SDLC/HDLC] X25 reversed : 0811 CRC16 standard : 8005 CRC16 reversed : 4003 [LHA] CRC32 : 04C11DB7 [PKZIP, AUTODIN II, Ethernet, FDDI]I would be interested in hearing from anyone out there who can tiedown the complete set of model parameters for any of these standards.However, a program that was kicking around seemed to imply thefollowing specifications. Can anyone confirm or deny them (or providethe check values (which I couldn't be bothered coding up andcalculating)). Name : "CRC-16/CITT" Width : 16 Poly : 1021 Init : FFFF RefIn : False RefOut : False XorOut : 0000 Check : ? Name : "XMODEM" Width : 16 Poly : 8408 Init : 0000 RefIn : True RefOut : True XorOut : 0000 Check : ? Name : "ARC" Width : 16 Poly : 8005 Init : 0000 RefIn : True RefOut : True XorOut : 0000 Check : ?Here is the specification for the CRC-32 algorithm which is reportedlyused in PKZip, AUTODIN II, Ethernet, and FDDI. Name : "CRC-32" Width : 32 Poly : 04C11DB7 Init : FFFFFFFF RefIn : True RefOut : True XorOut : FFFFFFFF Check : CBF4392617. An Implementation of the Model Algorithm--------------------------------------------Here is an implementation of the model algorithm in the C programminglanguage. The implementation consists of a header file (.h) and animplementation file (.c). If you're reading this document in asequential scroller, you can skip this code by searching for thestring "Roll Your Own".To ensure that the following code is working, configure it for theCRC-16 and CRC-32 algorithms given above and ensure that they producethe specified "check" checksum when fed the test string "123456789"(see earlier)./******************************************************************************//* Start of crcmodel.h *//******************************************************************************//* *//* Author : Ross Williams (ross@guest.adelaide.edu.au.). *//* Date : 3 June 1993. *//* Status : Public domain. *//* *//* Description : This is the header (.h) file for the reference *//* implementation of the Rocksoft^tm Model CRC Algorithm. For more *//* information on the Rocksoft^tm Model CRC Algorithm, see the document *//* titled "A Painless Guide to CRC Error Detection Algorithms" by Ross *//* Williams (ross@guest.adelaide.edu.au.). This document is likely to be in *//* "ftp.adelaide.edu.au/pub/rocksoft". *//* *//* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. *//* *//******************************************************************************//* *//* How to Use This Package *//* ----------------------- *//* Step 1: Declare a variable of type cm_t. Declare another variable *//* (p_cm say) of type p_cm_t and initialize it to point to the first *//* variable (e.g. p_cm_t p_cm = &cm_t). *//* *//* Step 2: Assign values to the parameter fields of the structure. *//* If you don't know what to assign, see the document cited earlier. *//* For example: *//* p_cm->cm_width = 16; *//* p_cm->cm_poly = 0x8005L; *//* p_cm->cm_init = 0L; *//* p_cm->cm_refin = TRUE; *//* p_cm->cm_refot = TRUE; *//* p_cm->cm_xorot = 0L; *//* Note: Poly is specified without its top bit (18005 becomes 8005). *//* Note: Width is one bit less than the raw poly width. *//* *//* Step 3: Initialize the instance with a call cm_ini(p_cm); *//* *//* Step 4: Process zero or more message bytes by placing zero or more *//* successive calls to cm_nxt. Example: cm_nxt(p_cm,ch); *//* *//* Step 5: Extract the CRC value at any time by calling crc = cm_crc(p_cm); *//* If the CRC is a 16-bit value, it will be in the bottom 16 bits. *//* *//******************************************************************************//* *//* Design Notes *//* ------------ *//* PORTABILITY: This package has been coded very conservatively so that *//* it will run on as many machines as possible. For example, all external *//* identifiers have been restricted to 6 characters and all internal ones to *//* 8 characters. The prefix cm (for Crc Model) is used as an attempt to avoid *//* namespace collisions. This package is endian independent. *//* *//* EFFICIENCY: This package (and its interface) is not designed for *//* speed. The purpose of this package is to act as a well-defined reference *//* model for the specification of CRC algorithms. If you want speed, cook up *//* a specific table-driven implementation as described in the document cited *//* above. This package is designed for validation only; if you have found or *//* implemented a CRC algorithm and wish to describe it as a set of parameters *//* to the Rocksoft^tm Model CRC Algorithm, your CRC algorithm implementation *//* should behave identically to this package under those parameters. *//* *//******************************************************************************//* The following #ifndef encloses this entire *//* header file, rendering it indempotent. */#ifndef CM_DONE#define CM_DONE/******************************************************************************//* The following definitions are extracted from my style header file which *//* would be cumbersome to distribute with this package. The DONE_STYLE is the *//* idempotence symbol used in my style header file. */#ifndef DONE_STYLEtypedef unsigned long ulong;typedef unsigned bool;typedef unsigned char * p_ubyte_;#ifndef TRUE#define FALSE 0#define TRUE 1#endif/* Change to the second definition if you don't have prototypes. */#define P_(A) A/* #define P_(A) () *//* Uncomment this definition if you don't have void. *//* typedef int void; */#endif/******************************************************************************//* CRC Model Abstract Type *//* ----------------------- *//* The following type stores the context of an executing instance of the *//* model algorithm. Most of the fields are model parameters which must be *//* set before the first initializing call to cm_ini. */typedef struct { int cm_width; /* Parameter: Width in bits [8,32]. */ ulong cm_poly; /* Parameter: The algorithm's polynomial. */ ulong cm_init; /* Parameter: Initial register value. */ bool cm_refin; /* Parameter: Reflect input bytes? */ bool cm_refot; /* Parameter: Reflect output CRC? */ ulong cm_xorot; /* Parameter: XOR this to output CRC. */ ulong cm_reg; /* Context: Context during execution. */ } cm_t;typedef cm_t *p_cm_t;/******************************************************************************//* Functions That Implement The Model *//* ---------------------------------- *//* The following functions animate the cm_t abstraction. */void cm_ini P_((p_cm_t p_cm));/* Initializes the argument CRC model instance. *//* All parameter fields must be set before calling this. */void cm_nxt P_((p_cm_t p_cm,int ch));/* Processes a single message byte [0,255]. */void cm_blk P_((p_cm_t p_cm,p_ubyte_ blk_adr,ulong blk_len));/* Processes a block of message bytes. */ulong cm_crc P_((p_cm_t p_cm));/* Returns the CRC value for the message bytes processed so far. *//******************************************************************************//* Functions For Table Calculation *//* ------------------------------- *//* The following function can be used to calculate a CRC lookup table. *//* It can also be used at run-time to create or check static tables. */ulong cm_tab P_((p_cm_t p_cm,int index));/* Returns the i'th entry for the lookup table for the specified algorithm. *//* The function examines the fields cm_width, cm_poly, cm_refin, and the *//* argument table index in the range [0,255] and returns the table entry in *//* the bottom cm_width bytes of the return value. *//******************************************************************************//* End of the header file idempotence #ifndef */#endif/******************************************************************************//* End of crcmodel.h *//******************************************************************************//******************************************************************************//* Start of crcmodel.c *//******************************************************************************//* *//* Author : Ross Williams (ross@guest.adelaide.edu.au.). *//* Date : 3 June 1993. *//* Status : Public domain. *//* *//* Description : This is the implementation (.c) file for the reference *//* implementation of the Rocksoft^tm Model CRC Algorithm. For more *//* information on the Rocksoft^tm Model CRC Algorithm, see the document *//* titled "A Painless Guide to CRC Error Detection Algorithms" by Ross *//* Williams (ross@guest.adelaide.edu.au.). This document is likely to be in *//* "ftp.adelaide.edu.au/pub/rocksoft". *//* *//* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. *//* *//******************************************************************************//* *//* Implementation Notes *//* -------------------- *//* To avoid inconsistencies, the specification of each function is not echoed *//* here. See the header file for a description of these functions. *//* This package is light on checking because I want to keep it short and *//* simple and portable (i.e. it would be too messy to distribute my entire *//* C culture (e.g. assertions package) with this package. *//* *//******************************************************************************/#include "crcmodel.h"/******************************************************************************//* The following definitions make the code more readable. */#define BITMASK(X) (1L << (X))#define MASK32 0xFFFFFFFFL#define LOCAL static/******************************************************************************/LOCAL ulong reflect P_((ulong v,int b));LOCAL ulong reflect (v,b)/* Returns the value v with the bottom b [0,32] bits reflected. *//* Example: reflect(0x3e23L,3) == 0x3e26 */ulong v;int b;{ int i; ulong t = v; for (i=0; i >=1; } return v;}/******************************************************************************/LOCAL ulong widmask P_((p_cm_t));LOCAL ulong widmask (p_cm)/* Returns a longword whose value is (2^p_cm->cm_width)-1. *//* The trick is to do this portably (e.g. without doing <<32). */p_cm_t p_cm;{ return (((1L<<(p_cm->cm_width-1))-1L)<<1)|1L;}/******************************************************************************/void cm_ini (p_cm)p_cm_t p_cm;{ p_cm->cm_reg = p_cm->cm_init;}/******************************************************************************/void cm_nxt (p_cm,ch)p_cm_t p_cm;int ch;{ int i; ulong uch = (ulong) ch; ulong topbit = BITMASK(p_cm->cm_width-1); if (p_cm->cm_refin) uch = reflect(uch,8); p_cm->cm_reg ^= (uch << (p_cm->cm_width-8)); for (i=0; i<8; i++) { if (p_cm->cm_reg & topbit) p_cm->cm_reg = (p_cm->cm_reg << 1) ^ p_cm->cm_poly; else p_cm->cm_reg <<= 1; p_cm->cm_reg &= widmask(p_cm); }}/******************************************************************************/void cm_blk (p_cm,blk_adr,blk_len)p_cm_t p_cm;p_ubyte_ blk_adr;ulong blk_len;{ while (blk_len--) cm_nxt(p_cm,*blk_adr++);}/******************************************************************************/ulong cm_crc (p_cm)p_cm_t p_cm;{ if (p_cm->cm_refot) return p_cm->cm_xorot ^ reflect(p_cm->cm_reg,p_cm->cm_width); else return p_cm->cm_xorot ^ p_cm->cm_reg;}/******************************************************************************/ulong cm_tab (p_cm,index)p_cm_t p_cm;int index;{ int i; ulong r; ulong topbit = BITMASK(p_cm->cm_width-1); ulong inbyte = (ulong) index; if (p_cm->cm_refin) inbyte = reflect(inbyte,8); r = inbyte << (p_cm->cm_width-8); for (i=0; i<8; i++) if (r & topbit) r = (r << 1) ^ p_cm->cm_poly; else r<<=1; if (p_cm->cm_refin) r = reflect(r,p_cm->cm_width); return r & widmask(p_cm);}/******************************************************************************//* End of crcmodel.c *//******************************************************************************/18. Roll Your Own Table-Driven Implementation---------------------------------------------Despite all the fuss I've made about understanding and defining CRCalgorithms, the mechanics of their high-speed implementation remainstrivial. There are really only two forms: normal and reflected. Normalshifts to the left and covers the case of algorithms with Refin=FALSEand Refot=FALSE. Reflected shifts to the right and covers algorithmswith both those parameters true. (If you want one parameter true andthe other false, you'll have to figure it out for yourself!) Thepolynomial is embedded in the lookup table (to be discussed). Theother parameters, Init and XorOt can be coded as macros. Here is the32-bit normal form (the 16-bit form is similar). unsigned long crc_normal (); unsigned long crc_normal (blk_adr,blk_len) unsigned char *blk_adr; unsigned long blk_len; { unsigned long crc = INIT; while (blk_len--) crc = crctable[((crc>>24) ^ *blk_adr++) & 0xFFL] ^ (crc << 8); return crc ^ XOROT; }Here is the reflected form: unsigned long crc_reflected (); unsigned long crc_reflected (blk_adr,blk_len) unsigned char *blk_adr; unsigned long blk_len; { unsigned long crc = INIT_REFLECTED; while (blk_len--) crc = crctable[(crc ^ *blk_adr++) & 0xFFL] ^ (crc >> 8)); return crc ^ XOROT; }Note: I have carefully checked the above two code fragments, but Ihaven't actually compiled or tested them. This shouldn't matter toyou, as, no matter WHAT you code, you will always be able to tell ifyou have got it right by running whatever you have created against thereference model given earlier. The code fragments above are reallyjust a rough guide. The reference model is the definitive guide.Note: If you don't care much about speed, just use the reference modelcode!19. Generating A Lookup Table-----------------------------The only component missing from the normal and reversed code fragmentsin the previous section is the lookup table. The lookup table can becomputed at run time using the cm_tab function of the model packagegiven earlier, or can be pre-computed and inserted into the C program.In either case, it should be noted that the lookup table depends onlyon the POLY and RefIn (and RefOt) parameters. Basically, thepolynomial determines the table, but you can generate a reflectedtable too if you want to use the reflected form above.The following program generates any desired 16-bit or 32-bit lookuptable. Skip to the word "Summary" if you want to skip over this code./******************************************************************************//* Start of crctable.c *//******************************************************************************//* *//* Author : Ross Williams (ross@guest.adelaide.edu.au.). *//* Date : 3 June 1993. *//* Version : 1.0. *//* Status : Public domain. *//* *//* Description : This program writes a CRC lookup table (suitable for *//* inclusion in a C program) to a designated output file. The program can be *//* statically configured to produce any table covered by the Rocksoft^tm *//* Model CRC Algorithm. For more information on the Rocksoft^tm Model CRC *//* Algorithm, see the document titled "A Painless Guide to CRC Error *//* Detection Algorithms" by Ross Williams (ross@guest.adelaide.edu.au.). This *//* document is likely to be in "ftp.adelaide.edu.au/pub/rocksoft". *//* *//* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. *//* *//******************************************************************************/#include #include #include "crcmodel.h"/******************************************************************************//* TABLE PARAMETERS *//* ================ *//* The following parameters entirely determine the table to be generated. You *//* should need to modify only the definitions in this section before running *//* this program. *//* *//* TB_FILE is the name of the output file. *//* TB_WIDTH is the table width in bytes (either 2 or 4). *//* TB_POLY is the "polynomial", which must be TB_WIDTH bytes wide. *//* TB_REVER indicates whether the table is to be reversed (reflected). *//* *//* Example: *//* *//* #define TB_FILE "crctable.out" *//* #define TB_WIDTH 2 *//* #define TB_POLY 0x8005L *//* #define TB_REVER TRUE */#define TB_FILE "crctable.out"#define TB_WIDTH 4#define TB_POLY 0x04C11DB7L#define TB_REVER TRUE/******************************************************************************//* Miscellaneous definitions. */#define LOCAL staticFILE *outfile;#define WR(X) fprintf(outfile,(X))#define WP(X,Y) fprintf(outfile,(X),(Y))/******************************************************************************/LOCAL void chk_err P_((char *));LOCAL void chk_err (mess)/* If mess is non-empty, write it out and abort. Otherwise, check the error *//* status of outfile and abort if an error has occurred. */char *mess;{ if (mess[0] != 0 ) {printf("%s\n",mess); exit(EXIT_FAILURE);} if (ferror(outfile)) {perror("chk_err"); exit(EXIT_FAILURE);}}/******************************************************************************/LOCAL void chkparam P_((void));LOCAL void chkparam (){ if ((TB_WIDTH != 2) && (TB_WIDTH != 4)) chk_err("chkparam: Width parameter is illegal."); if ((TB_WIDTH == 2) && (TB_POLY & 0xFFFF0000L)) chk_err("chkparam: Poly parameter is too wide."); if ((TB_REVER != FALSE) && (TB_REVER != TRUE)) chk_err("chkparam: Reverse parameter is not boolean.");}/******************************************************************************/LOCAL void gentable P_((void));LOCAL void gentable (){ WR("/*****************************************************************/\n"); WR("/* */\n"); WR("/* CRC LOOKUP TABLE */\n"); WR("/* ================ */\n"); WR("/* The following CRC lookup table was generated automagically */\n"); WR("/* by the Rocksoft^tm Model CRC Algorithm Table Generation */\n"); WR("/* Program V1.0 using the following model parameters: */\n"); WR("/* */\n"); WP("/* Width : %1lu bytes. */\n", (ulong) TB_WIDTH); if (TB_WIDTH == 2) WP("/* Poly : 0x%04lX */\n", (ulong) TB_POLY); else WP("/* Poly : 0x%08lXL */\n", (ulong) TB_POLY); if (TB_REVER) WR("/* Reverse : TRUE. */\n"); else WR("/* Reverse : FALSE. */\n"); WR("/* */\n"); WR("/* For more information on the Rocksoft^tm Model CRC Algorithm, */\n"); WR("/* see the document titled \"A Painless Guide to CRC Error */\n"); WR("/* Detection Algorithms\" by Ross Williams */\n"); WR("/* (ross@guest.adelaide.edu.au.). This document is likely to be */\n"); WR("/* in the FTP archive \"ftp.adelaide.edu.au/pub/rocksoft\". */\n"); WR("/* */\n"); WR("/*****************************************************************/\n"); WR("\n"); switch (TB_WIDTH) { case 2: WR("unsigned short crctable[256] =\n{\n"); break; case 4: WR("unsigned long crctable[256] =\n{\n"); break; default: chk_err("gentable: TB_WIDTH is invalid."); } chk_err(""); { int i; cm_t cm; char *form = (TB_WIDTH==2) ? "0x%04lX" : "0x%08lXL"; int perline = (TB_WIDTH==2) ? 8 : 4; cm.cm_width = TB_WIDTH*8; cm.cm_poly = TB_POLY; cm.cm_refin = TB_REVER; for (i=0; i<256; i++) { WR(" "); WP(form,(ulong) cm_tab(&cm,i)); if (i != 255) WR(","); if (((i+1) % perline) == 0) WR("\n"); chk_err(""); } WR("};\n"); WR("\n"); WR("/*****************************************************************/\n"); WR("/* End of CRC Lookup Table */\n"); WR("/*****************************************************************/\n"); WR(""); chk_err("");}}/******************************************************************************/main (){ printf("\n"); printf("Rocksoft^tm Model CRC Algorithm Table Generation Program V1.0\n"); printf("-------------------------------------------------------------\n"); printf("Output file is \"%s\".\n",TB_FILE); chkparam(); outfile = fopen(TB_FILE,"w"); chk_err(""); gentable(); if (fclose(outfile) != 0) chk_err("main: Couldn't close output file."); printf("\nSUCCESS: The table has been successfully written.\n");}/******************************************************************************//* End of crctable.c *//******************************************************************************/20. Summary-----------This document has provided a detailed explanation of CRC algorithmsexplaining their theory and stepping through increasinglysophisticated implementations ranging from simple bit shifting throughto byte-at-a-time table-driven implementations. The variousimplementations of different CRC algorithms that make them confusingto deal with have been explained. A parameterized model algorithm hasbeen described that can be used to precisely define a particular CRCalgorithm, and a reference implementation provided. Finally, a programto generate CRC tables has been provided.21. Corrections---------------If you think that any part of this document is unclear or incorrect,or have any other information, or suggestions on how this documentcould be improved, please context the author. In particular, I wouldlike to hear from anyone who can provide Rocksoft^tm Model CRCAlgorithm parameters for standard algorithms out there.A. Glossary-----------CHECKSUM - A number that has been calculated as a function of somemessage. The literal interpretation of this word "Check-Sum" indicatesthat the function should involve simply adding up the bytes in themessage. Perhaps this was what early checksums were. Today, however,although more sophisticated formulae are used, the term "checksum" isstill used.CRC - This stands for "Cyclic Redundancy Code". Whereas the term"checksum" seems to be used to refer to any non-cryptographic checkinginformation unit, the term "CRC" seems to be reserved only foralgorithms that are based on the "polynomial" division idea.G - This symbol is used in this document to represent the Poly.MESSAGE - The input data being checksummed. This is usually structuredas a sequence of bytes. Whether the top bit or the bottom bit of eachbyte is treated as the most significant or least significant is aparameter of CRC algorithms.POLY - This is my friendly term for the polynomial of a CRC.POLYNOMIAL - The "polynomial" of a CRC algorithm is simply the divisorin the division implementing the CRC algorithm.REFLECT - A binary number is reflected by swapping all of its bitsaround the central point. For example, 1101 is the reflection of 1011.ROCKSOFT^TM MODEL CRC ALGORITHM - A parameterized algorithm whosepurpose is to act as a solid reference for describing CRC algorithms.Typically CRC algorithms are specified by quoting a polynomial.However, in order to construct a precise implementation, one alsoneeds to know initialization values and so on.WIDTH - The width of a CRC algorithm is the width of its polynomicalminus one. For example, if the polynomial is 11010, the width would be4 bits. The width is usually set to be a multiple of 8 bits.B. References-------------[Griffiths87] Griffiths, G., Carlyle Stones, G., "The Tea-Leaf ReaderAlgorithm: An Efficient Implementation of CRC-16 and CRC-32",Communications of the ACM, 30(7), pp.617-620. Comment: This paperdescribes a high-speed table-driven implementation of CRC algorithms.The technique seems to be a touch messy, and is superceded by theSarwete algorithm.[Knuth81] Knuth, D.E., "The Art of Computer Programming", Volume 2:Seminumerical Algorithms, Section 4.6.[Nelson 91] Nelson, M., "The Data Compression Book", M&T Books, (501Galveston Drive, Redwood City, CA 94063), 1991, ISBN: 1-55851-214-4.Comment: If you want to see a real implementation of a real 32-bitchecksum algorithm, look on pages 440, and 446-448.[Sarwate88] Sarwate, D.V., "Computation of Cyclic Redundancy Checksvia Table Look-Up", Communications of the ACM, 31(8), pp.1008-1013.Comment: This paper describes a high-speed table-driven implementationfor CRC algorithms that is superior to the tea-leaf algorithm.Although this paper describes the technique used by most modern CRCimplementations, I found the appendix of this paper (where all thegood stuff is) difficult to understand.[Tanenbaum81] Tanenbaum, A.S., "Computer Networks", Prentice Hall,1981, ISBN: 0-13-164699-0. Comment: Section 3.5.3 on pages 128 to 132provides a very clear description of CRC codes. However, it does notdescribe table-driven implementation techniques.C. References I Have Detected But Haven't Yet Sighted-----------------------------------------------------Boudreau, Steen, "Cyclic Redundancy Checking by Program," AFIPSProceedings, Vol. 39, 1971.Davies, Barber, "Computer Networks and Their Protocols," J. Wiley &Sons, 1979.Higginson, Kirstein, "On the Computation of Cyclic Redundancy Checksby Program," The Computer Journal (British), Vol. 16, No. 1, Feb 1973.McNamara, J. E., "Technical Aspects of Data Communication," 2ndEdition, Digital Press, Bedford, Massachusetts, 1982.Marton and Frambs, "A Cyclic Redundancy Checking (CRC) Algorithm,"Honeywell Computer Journal, Vol. 5, No. 3, 1971.Nelson M., "File verification using CRC", Dr Dobbs Journal, May 1992,pp.64-67.Ramabadran T.V., Gaitonde S.S., "A tutorial on CRC computations", IEEEMicro, Aug 1988.Schwaderer W.D., "CRC Calculation", April 85 PC Tech Journal,pp.118-133.Ward R.K, Tabandeh M., "Error Correction and Detection, A GeometricApproach" The Computer Journal, Vol. 27, No. 3, 1984, pp.246-253.Wecker, S., "A Table-Lookup Algorithm for Software Computation ofCyclic Redundancy Check (CRC)," Digital Equipment Corporationmemorandum, 1974.-- -- Dave Janecek -Electronic Field Service Tech. c/o I.R.M. Tech Shop-0201, ASU, Tempe, Arizona 85287-0201 :602-965-9126 or home :602-832-7127